Lecture given at the 61st Meeting of the

European Working Group

“Multicriteria Aid for Decisions"

March 10, 2005, Luxembourg, G.D. Luxembourg
Ghent University, Belgium

Cycle-transitivity and the Resolution of Preference Cycles

Bernard DE BAETS and Hans DE MEYER

partially based on joint work with B. De Schuymen
Contents

1. Introduction
2. Reciprocal relations
3. Cycle-transitivity
4. Comparison of random variables
5. Stochastic dominance
6. Resolution of cycles
1. Statistical preference and cycles

Integers 1–18 distributed over 3 dice:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>
1. Statistical preference and cycles

Integers 1–18 distributed over 3 dice:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

B. De Baets
1. Statistical preference and cycles

Statistical preference:

- **$X \triangleright Y$**: X is preferred to Y if $\text{Prob}\{X > Y\} > \frac{1}{2}$

- can contain cycles (of type SCISSORS–STONE–PAPER)
1. Statistical preference and cycles

- **Statistical preference:**
 - $X \triangleright Y$: X is preferred to Y if $\text{Prob}\{X > Y\} > \frac{1}{2}$
 - can contain cycles (of type SCISSORS–STONE–PAPER)

![Diagram showing cycles and probability arrows]
1. Research questions

Question 1:
Does there exist a general framework for studying transitivity?
1. Research questions

Question 1:
Does there exist a general framework for studying transitivity?

Question 2:
Are cycles really incompatible with any notion of transitivity?
1. Research questions

Question 1:
Does there exist a general framework for studying transitivity?

Question 2:
Are cycles really incompatible with any notion of transitivity?

Question 3:
Can cycles be resolved?
2.1 Reciprocal relations

Reciprocal relation \(Q \) on \(X: Q : X^2 \rightarrow [0, 1] \) such that

\[
Q(a, b) + Q(b, a) = 1
\]
2.1 Reciprocal relations

Reciprocal relation Q on X: $Q : X^2 \rightarrow [0, 1]$ such that

$$Q(a, b) + Q(b, a) = 1$$

Synonyms: probabilistic relation, ipsodual relation
2.1 Reciprocal relations

- Reciprocal relation Q on X: $Q : X^2 \rightarrow [0, 1]$ such that
 \[Q(a, b) + Q(b, a) = 1 \]

- Synonyms: probabilistic relation, ipsodual relation

- Generalization of complete relations:
 \[
 Q(a, b) = \begin{cases}
 1 & \text{, if } R(a, b) = 1 \text{ and } R(b, a) = 0 \\
 1/2 & \text{, if } R(a, b) = R(b, a) = 1 \\
 0 & \text{, if } R(a, b) = 0 \text{ and } R(b, a) = 1
 \end{cases}
 \]
 or in compact form
 \[
 Q(a, b) = \frac{1 + R(a, b) - R(b, a)}{2}
 \]
2.2 Transitivity of crisp and fuzzy relations

Transitivity of a crisp relation R:

$$(R(a, b) = 1 \land R(b, c) = 1) \Rightarrow R(a, c) = 1$$
2.2 Transitivity of crisp and fuzzy relations

Transitivity of a crisp relation R:

\[(R(a, b) = 1 \land R(b, c) = 1) \Rightarrow R(a, c) = 1\]

T-transitivity of a fuzzy relation R: t-norm T

\[T(R(a, b), R(b, c)) \leq R(a, c)\]
2.2 Triangular norms

- **Triangular norm** (t-norm): $T : [0, 1]^2 \rightarrow [0, 1]$ such that
 - increasing, neutral element 1 (and absorbing element 0)
 - commutative and associative
2.2 Triangular norms

- Triangular norm (t-norm): $T : [0, 1]^2 \rightarrow [0, 1]$ such that
 - increasing, neutral element 1 (and absorbing element 0)
 - commutative and associative

- Basic t-norms (algebraic importance):

<table>
<thead>
<tr>
<th>minimum</th>
<th>T_M</th>
<th>$\min(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>T_P</td>
<td>xy</td>
</tr>
<tr>
<td>Łukasiewicz t-norm</td>
<td>T_L</td>
<td>$\max(x + y - 1, 0)$</td>
</tr>
</tbody>
</table>
2.2 Triangular norms

- **Triangular norm** (t-norm): $T : [0, 1]^2 \rightarrow [0, 1]$ such that
 - increasing, neutral element 1 (and absorbing element 0)
 - commutative and associative

- **Basic t-norms (algebraic importance):**

<table>
<thead>
<tr>
<th>minimum</th>
<th>T_M</th>
<th>$\min(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>T_P</td>
<td>xy</td>
</tr>
<tr>
<td>Łukasiewicz t-norm</td>
<td>T_L</td>
<td>$\max(x + y - 1, 0)$</td>
</tr>
</tbody>
</table>

- **Ordering of basic t-norms:** $T_L \leq T_P \leq T_M$
2.2 Triangular norms

- **Triangular norm** (t-norm): $T : [0, 1]^2 \rightarrow [0, 1]$ such that
 - increasing, neutral element 1 (and absorbing element 0)
 - commutative and associative

- Basic t-norms (algebraic importance):

<table>
<thead>
<tr>
<th>minimum</th>
<th>T_M</th>
<th>$\min(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>T_P</td>
<td>xy</td>
</tr>
<tr>
<td>Łukasiewicz t-norm</td>
<td>T_L</td>
<td>$\max(x + y - 1, 0)$</td>
</tr>
</tbody>
</table>

- Ordering of basic t-norms: $T_L \leq T_P \leq T_M$

- **Min-transitivity**: equivalent to transitivity of cut relations R_α
2.3 Stochastic transitivity of reciprocal relations

Increasing $g : [1/2, 1]^2 \rightarrow [0, 1]$ such that $g(1/2, 1/2) \leq 1/2$.
2.3 Stochastic transitivity of reciprocal relations

- Increasing $g : [1/2, 1]^2 \rightarrow [0, 1]$ such that $g(1/2, 1/2) \leq 1/2$.

- A reciprocal relation Q on A is called g-stochastic transitive if

$(Q(a, b) \geq 1/2 \land Q(b, c) \geq 1/2) \Rightarrow g(Q(a, b), Q(b, c)) \leq Q(a, c)$

<table>
<thead>
<tr>
<th>Type of Stochastic Transitivity</th>
<th>Corresponding Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong stochastic transitivity</td>
<td>max</td>
</tr>
<tr>
<td>moderate stochastic transitivity</td>
<td>min</td>
</tr>
<tr>
<td>weak stochastic transitivity</td>
<td>$1/2$</td>
</tr>
</tbody>
</table>
2.3 Stochastic transitivity of reciprocal relations

- Increasing $g : [1/2, 1]^2 \rightarrow [0, 1]$ such that $g(1/2, 1/2) \leq 1/2$.

- A reciprocal relation Q on A is called g-stochastic transitive if

\[
(Q(a, b) \geq 1/2 \land Q(b, c) \geq 1/2) \Rightarrow g(Q(a, b), Q(b, c)) \leq Q(a, c)
\]

- **Strong stochastic transitivity**
 - \max

- **Moderate stochastic transitivity**
 - \min

- **Weak stochastic transitivity**
 - $1/2$

- Moderate stochastic transitivity: equivalent to transitivity of cut relations Q_α, $\alpha \geq 1/2$
Increasing $h : [1/2, 1]^2 \rightarrow [0, 1]$ such that $h(1/2, 1/2) \leq 1/2$ and $h(1/2, 1) = h(1, 1/2) = 1$.
2.3 Isostochastic transitivity of reciprocal relations

Increasing \(h : [1/2, 1]^2 \rightarrow [0, 1] \) such that \(h(1/2, 1/2) \leq 1/2 \) and \(h(1/2, 1) = h(1, 1/2) = 1 \).

A reciprocal relation \(Q \) on \(A \) is called \(h \)-isostochastic transitive if

\[
(Q(a, b) \geq 1/2 \land Q(b, c) \geq 1/2) \Rightarrow h(Q(a, b), Q(b, c)) = Q(a, c)
\]
2.4 FG-transitivity of reciprocal relations

Two $[1/2, 1]^2 \rightarrow [0, 1]$ mappings F and G such that

- $F(1/2, 1/2) \leq 1/2 \leq G(1/2, 1/2)$ and
- $G(1/2, 1) = G(1, 1/2) = G(1, 1) = 1$
- $F \leq G$
2.4 FG-transitivity of reciprocal relations

- Two $[1/2, 1]^2 \rightarrow [0, 1]$ mappings F and G such that
 - $F(1/2, 1/2) \leq 1/2 \leq G(1/2, 1/2)$ and
 - $G(1/2, 1) = G(1, 1/2) = G(1, 1) = 1$
 - $F \leq G$

- A reciprocal relation Q on A is called FG-transitive if

\[
(Q(a, b) \geq 1/2 \land Q(b, c) \geq 1/2) \\
\Downarrow \\
F(Q(a, b), Q(b, c)) \leq Q(a, c) \leq G(Q(a, b), Q(b, c))
\]
2.4 FG-transitivity is a general framework

Stochastic transitivity:

<table>
<thead>
<tr>
<th>Type</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>g-stochastic transitivity</td>
<td>$F = g$</td>
<td>$G = 1$</td>
</tr>
<tr>
<td>h-isostochastic transitivity</td>
<td>$F = h$</td>
<td>$G = h$</td>
</tr>
</tbody>
</table>
2.4 \textit{FG}-transitivity is a general framework

- Stochastic transitivity:

\begin{align*}
\text{\textit{g}-stochastic transitivity} & : F = g & G = 1 \\
\text{\textit{h}-isostochastic transitivity} & : F = h & G = h
\end{align*}

- \textit{T}-transitivity, with \textit{T} a left-continuous t-norm = \textit{FG}-transitivity w.r.t.

\[
F(x, y) = \max(T(x, y), 1 - I_T(x, 1 - y), 1 - I_T(y, 1 - x)) \\
G(x, y) = 1 - T(1 - x, 1 - y)
\]

with \(I_T \) the residual implicator of \textit{T} defined by

\[
I_T(x, y) = \sup \{ z \in [0, 1] \mid T(x, z) \leq y \} \]
3.1 Cycle-transitivity

Framework for studying the transitivity of reciprocal relations
3.1 Cycle-transitivity

Framework for studying the transitivity of reciprocal relations

Unorthodox evaluation:

- triangles are visited in a cyclic manner
- while ordering the weights encountered
- and imposing an upper bound on sum minus 1
3.1 Cycle-transitivity

- Framework for studying the transitivity of reciprocal relations
- Unorthodox evaluation:
 - triangles are visited in a cyclic manner
 - while ordering the weights encountered
 - and imposing an upper bound on sum minus 1
- Harbours various types of fuzzy and stochastic transitivity
3.1 Cycle-transitivity

Reciprocal relation Q:

<table>
<thead>
<tr>
<th>α_{abc}</th>
<th>$\min{Q(a, b), Q(b, c), Q(c, a)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{abc}</td>
<td>$\text{median}{Q(a, b), Q(b, c), Q(c, a)}$</td>
</tr>
<tr>
<td>γ_{abc}</td>
<td>$\max{Q(a, b), Q(b, c), Q(c, a)}$</td>
</tr>
</tbody>
</table>

![Diagram of cycle-transitivity with red arrows and labels α, β, γ.]
A reciprocal relation Q on A is called **cycle-transitive** w.r.t. an upper bound function U if for any $a, b, c \in A$

$$L(\alpha_{abc}, \beta_{abc}, \gamma_{abc}) \leq \alpha_{abc} + \beta_{abc} + \gamma_{abc} - 1 \leq U(\alpha_{abc}, \beta_{abc}, \gamma_{abc})$$
3.1 Cycle-transitivity

A reciprocal relation Q on A is called cycle-transitive w.r.t. an upper bound function U if for any $a, b, c \in A$

$$L(\alpha_{abc}, \beta_{abc}, \gamma_{abc}) \leq \alpha_{abc} + \beta_{abc} + \gamma_{abc} - 1 \leq U(\alpha_{abc}, \beta_{abc}, \gamma_{abc})$$

Dual lower bound function: function $L : \Delta \rightarrow \mathbb{R}$ defined by

$$L(\alpha, \beta, \gamma) = 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha)$$
3.1 Cycle-transitivity

A reciprocal relation Q on A is called cycle-transitive w.r.t. an upper bound function U if for any $a, b, c \in A$

$$L(\alpha_{abc}, \beta_{abc}, \gamma_{abc}) \leq \alpha_{abc} + \beta_{abc} + \gamma_{abc} - 1 \leq U(\alpha_{abc}, \beta_{abc}, \gamma_{abc})$$

Dual lower bound function: function $L : \Delta \rightarrow \mathbb{R}$ defined by

$$L(\alpha, \beta, \gamma) = 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha)$$

A function $U : \Delta = \{(x, y, z) \in [0, 1]^3 \mid x \leq y \leq z\} \rightarrow \mathbb{R}$ is called an upper bound function if it satisfies:

- $U(0, 0, 1) \geq 0$ and $U(0, 1, 1) \geq 1$
- for any $(\alpha, \beta, \gamma) \in \Delta$:
 $$U(\alpha, \beta, \gamma) \geq 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha)$$
3.2 Stochastic transitivity

- **Commutative** g such that $g(1/2, x) \leq x$.

- **Theorem**: g-stochastic transitivity = cycle-transitivity w.r.t.

$$U_g(\alpha, \beta, \gamma) = \begin{cases}
\beta + \gamma - g(\beta, \gamma) & , \text{if } \beta \geq 1/2 \land \alpha < 1/2 \\
1/2 & , \text{if } \alpha \geq 1/2 \\
2 & , \text{if } \beta < 1/2
\end{cases}$$

<table>
<thead>
<tr>
<th>type</th>
<th>upper bound function</th>
<th>equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong</td>
<td>β</td>
<td>β, if $\beta \geq 1/2$</td>
</tr>
<tr>
<td>moderate</td>
<td>γ</td>
<td></td>
</tr>
<tr>
<td>weak</td>
<td>$\beta + \gamma - 1/2$</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Partial stochastic transitivity

A reciprocal relation Q on A is called partial stochastic transitive if

$$(Q(a, b) > 1/2 \land Q(b, c) > 1/2) \Rightarrow \min(Q(a, b), Q(b, c)) \leq Q(a, c)$$
3.3 Partial stochastic transitivity

A reciprocal relation Q on A is called **partial stochastic transitive** if

$$(Q(a, b) > 1/2 \land Q(b, c) > 1/2) \Rightarrow \min(Q(a, b), Q(b, c)) \leq Q(a, c)$$

Slightly weaker than moderate stochastic transitivity
3.3 Partial stochastic transitivity

A reciprocal relation Q on A is called **partial stochastic transitive** if

$$(Q(a, b) > 1/2 \land Q(b, c) > 1/2) \Rightarrow \min(Q(a, b), Q(b, c)) \leq Q(a, c)$$

Slightly weaker than moderate stochastic transitivity

Partial stochastic transitivity = cycle-transitivity w.r.t.

$$U(\alpha, \beta, \gamma) = \gamma$$
3.4 T-transitivity of reciprocal relations

1-Lipschitz t-norm T:

$$|T(x_1, y_1) - T(x_2, y_2)| \leq |x_1 - x_2| + |y_1 - y_2|$$

Theorem: T-transitivity = cycle-transitivity w.r.t. $U_T(\alpha, \beta, \gamma) = \alpha + \beta - T(\alpha, \beta)$

<table>
<thead>
<tr>
<th>t-norm</th>
<th>upper bound function</th>
<th>equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_M</td>
<td>$\max(\alpha, \beta)$</td>
<td>β</td>
</tr>
<tr>
<td>T_P</td>
<td>$\alpha + \beta - \alpha\beta$</td>
<td></td>
</tr>
<tr>
<td>T_L</td>
<td>$\min(\alpha + \beta, 1)$</td>
<td>1</td>
</tr>
</tbody>
</table>
3.4 Copulas

Copula: $C : [0, 1]^2 \rightarrow [0, 1]$ such that
- neutral element 1, absorbing element 0
- moderate growth:

$$((x_1 \leq x_2 \land y_1 \leq y_2) \Rightarrow C(x_1, y_1) + C(x_2, y_2) \geq C(x_1, y_2) + C(x_2, y_1))$$
3.4 Copulas

- **Copula**: $C : [0, 1]^2 \rightarrow [0, 1]$ such that
 - neutral element 1, absorbing element 0
 - moderate growth:

\[
\left(x_1 \leq x_2 \land y_1 \leq y_2 \right) \Rightarrow C(x_1, y_1) + C(x_2, y_2) \geq C(x_1, y_2) + C(x_2, y_1)
\]

- Basic t-norms are copulas and $T_L \leq C \leq T_M$

- Relationship between t-norms and copulas:

 copula + associativity \Rightarrow t-norm

 t-norm + 1-Lipschitz \Rightarrow copula
3.4 The Frank t-norm/copula family

Frank family \((T_s^F)_{s \in [0, \infty]}\): for \(s \in]0, 1[\cup]1, \infty[\)

\[
T_s^F(x, y) = \log_s \left(1 + \frac{(s^x - 1)(s^y - 1)}{s - 1} \right)
\]
3.4 The Frank t-norm/copula family

Frank family $(T^F_s)_{s \in [0, \infty]}$: for $s \in]0, 1[\cup]1, \infty[$

\[
T^F_s(x, y) = \log_s \left(1 + \frac{(s^x - 1)(s^y - 1)}{s - 1} \right)
\]

Limit cases:

<table>
<thead>
<tr>
<th>s</th>
<th>T_M</th>
<th>T_P</th>
<th>T_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. De Baets
3.4 The Frank t-norm/copula family

Frank family \((T_s^F)_{s \in [0, \infty]}\): for \(s \in]0, 1[\cup]1, \infty[\)

\[T_s^F(x, y) = \log_s \left(1 + \frac{(s^x - 1)(s^y - 1)}{s - 1} \right) \]

Limit cases:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(T_M)</td>
</tr>
<tr>
<td>1</td>
<td>(T_P)</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(T_L)</td>
</tr>
</tbody>
</table>

Prototypical solutions of the functional equation of Frank:

\[x + y - T(x, y) = 1 - T(1 - x, 1 - y) \]
3.4 The Frank t-norm/copula family

Frank family \((T^F_s)_{s \in [0, \infty]}: \) for \(s \in]0, 1[\cup]1, \infty[\)

\[
T^F_s(x, y) = \log_s \left(1 + \frac{(s^x - 1)(s^y - 1)}{s - 1} \right)
\]

Limit cases:

<table>
<thead>
<tr>
<th>0</th>
<th>(T_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T_P)</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(T_L)</td>
</tr>
</tbody>
</table>

Prototypical solutions of the functional equation of Frank:

\[
x + y - T(x, y) = 1 - T(1 - x, 1 - y)
\]

\(T^F_s \)-transitivity = cycle-transitivity w.r.t.

\[
U_s(\alpha, \beta, \gamma) = 1 - T^F_s(1 - \alpha, 1 - \beta)
\]

B. De Baets
3.5 Self-dual upper bound functions

Self-dual upper bound function \((U = L)\):

\[U(\alpha, \beta, \gamma) = 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha) \]
3.5 Self-dual upper bound functions

- Self-dual upper bound function \((U = L)\):

\[U(\alpha, \beta, \gamma) = 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha) \]

- Simplest example: \(U_M = \text{median} \) (\(T_M\)-transitivity)
3.5 Self-dual upper bound functions

Self-dual upper bound function \((U = L)\):

\[
U(\alpha, \beta, \gamma) = 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha)
\]

Simplest example: \(U_M = \text{median} \quad (T_M\text{-transitivity})\)

Other interesting example:

\[
U_E(\alpha, \beta, \gamma) = \alpha \beta + \alpha \gamma + \beta \gamma - 2\alpha \beta \gamma
\]
3.5 Isostochastic transitivity

Commutative $h : [1/2, 1]^2 \rightarrow [1/2, 1]$ with neutral element $1/2$.

Theorem: h-isostochastic transitivity = cycle-transitivity w.r.t. the self-dual upper bound function

$$U^i_h(\alpha, \beta, \gamma) = \begin{cases}
\beta + \gamma - h(\beta, \gamma) & \text{, if } \beta \geq 1/2 \\
\alpha + \beta - 1 + h(1 - \beta, 1 - \alpha) & \text{, if } \beta < 1/2
\end{cases}$$
3.5 Multiplicative transitivity

A reciprocal relation Q on A is called **multiplicatively transitive** if

$$\frac{Q(a, c)}{Q(c, a)} = \frac{Q(a, b)}{Q(b, a)} \cdot \frac{Q(b, c)}{Q(c, b)}$$
3.5 Multiplicative transitivity

A reciprocal relation Q on A is called **multiplicatively transitive** if

\[
\frac{Q(a, c)}{Q(c, a)} = \frac{Q(a, b)}{Q(b, a)} \cdot \frac{Q(b, c)}{Q(c, b)}
\]

Multiplicative transitivity = h-isostochastic transitivity w.r.t.

\[
h(x, y) = \frac{xy}{xy + (1 - x)(1 - y)}
\]
3.5 Multiplicative transitivity

A reciprocal relation Q on A is called multiplicatively transitive if

$$
\frac{Q(a, c)}{Q(c, a)} = \frac{Q(a, b)}{Q(b, a)} \cdot \frac{Q(b, c)}{Q(c, b)}
$$

Multiplicative transitivity = h-isostochastic transitivity w.r.t.

$$
h(x, y) = \frac{xy}{xy + (1 - x)(1 - y)}
$$

Multiplicative transitivity = cycle-transitivity w.r.t.

$$
U_E(\alpha, \beta, \gamma) = \alpha \beta + \alpha \gamma + \beta \gamma - 2\alpha \beta \gamma
$$
3.6. FG-transitivity versus cycle-transitivity

From FG-transitivity to cycle-transitivity:

- **commutative** $[1/2, 1]^2 \rightarrow [0, 1]$ functions F and G such that $F(1/2, x) \leq x \leq G(1/2, x)$

- transformation possible, yet ugly
3.6. \textit{FG}-transitivity versus cycle-transitivity

From \textit{FG}-transitivity to cycle-transitivity:

- commutative \([1/2, 1]^2 \rightarrow [0, 1]\) functions \(F\) and \(G\) such that \(F(1/2, x) \leq x \leq G(1/2, x)\)

- transformation possible, yet ugly

From cycle-transitivity to \textit{FG}-transitivity:

- transformation possible in esoteric cases, and difficult

- transformation impossible in essential cases
3.6. FG-transitivity versus cycle-transitivity

From FG-transitivity to cycle-transitivity:

- **commutative** $[1/2, 1]^2 \rightarrow [0, 1]$ functions F and G such that $F(1/2, x) \leq x \leq G(1/2, x)$
- transformation possible, yet ugly

From cycle-transitivity to FG-transitivity:

- transformation possible in esoteric cases, and difficult
- transformation impossible in essential cases

Counterexample: **dice-transitivity** = cycle-transitivity w.r.t.

\[U_D(\alpha, \beta, \gamma) = \beta + \gamma - \beta\gamma \]

- between T_L-transitivity and T_P-transitivity
- between T_L-transitivity and moderate stochastic transitivity
4.1 Dice-transitivity of winning probabilities

Random vector (X, Y):

\[Q(X, Y) = \text{Prob}\{X > Y\} + \frac{1}{2} \text{Prob}\{X = Y\} \]

leads to reciprocity: \[Q(X, Y) + Q(Y, X) = 1 \]

is in general based on the joint distribution
4.1 Dice-transitivity of winning probabilities

Random vector \((X, Y)\):

\[
Q(X, Y) = \text{Prob}\{X > Y\} + \frac{1}{2} \text{Prob}\{X = Y\}
\]

leads to reciprocity: \(Q(X, Y) + Q(Y, X) = 1\)

is in general based on the joint distribution

Theorem: The reciprocal relation generated by pairwise independent random variables is dice-transitive, i.e. cycle-transitive w.r.t.

\[
U_D(\alpha, \beta, \gamma) = \beta + \gamma - \beta \gamma
\]
4.1 Dice-transitivity of winning probabilities

Dice-transitivity can be written as:

\[\beta \gamma \leq 1 - \alpha \]
4.1 Dice-transitivity of winning probabilities

Dice-transitivity can be written as:

\[\beta \gamma \leq 1 - \alpha \]
4.2 One- and two-parameter families

- Marginal distributions belonging to a same parametric family
 - One-parameter: exponential, geometric, power-law (subfamilies of Beta and Pareto families), Gumbel
 - multiplicative transitivity
 - Two-parameter: normal
 - moderate stochastic transitivity
4.2 One-parameter families

Families with parameter $\lambda \in \mathbb{R}$: h-isostochastic transitivity

<table>
<thead>
<tr>
<th>Name</th>
<th>Density function</th>
<th>Parameter $a > 0$</th>
<th>$x \in [\lambda, \lambda + a]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>$1/a$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laplace</td>
<td>$e^{-</td>
<td>x-\lambda</td>
<td>/\mu/(2\mu)}$</td>
</tr>
<tr>
<td>Normal</td>
<td>$e^{-(x-\lambda)^2/2\sigma^2}/\sqrt{2\pi\sigma^2}$</td>
<td>$\sigma > 0$</td>
<td>$x \in]-\infty, \infty[$</td>
</tr>
</tbody>
</table>
4.2 One-parameter families

Families with parameter $\lambda \in \mathbb{R}$: h-isostochastic transitivity

<table>
<thead>
<tr>
<th>Name</th>
<th>Density function</th>
<th>$\lambda > 0$</th>
<th>$x \in [\lambda, \lambda + \alpha]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>$\frac{1}{\alpha}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laplace</td>
<td>$e^{-</td>
<td>x-\lambda</td>
<td>/\mu}/(2\mu)$</td>
</tr>
<tr>
<td>Normal</td>
<td>$e^{-(x-\lambda)^2/2\sigma^2}/\sqrt{2\pi\sigma^2}$</td>
<td>$\sigma > 0$</td>
<td>$x \in]-\infty, \infty[$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Function h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>$1 - 1/2 \left(\max(\sqrt{2(1-x)} + \sqrt{2(1-y)} - 1, 0) \right)^2$</td>
</tr>
<tr>
<td>Laplace</td>
<td>$1 - f^{-1}(f(1-x) + f(1-y))$</td>
</tr>
<tr>
<td></td>
<td>with $f^{-1}(x) = 1/2 (1 + x/2) e^{-x}$</td>
</tr>
<tr>
<td>Normal</td>
<td>$\Phi(\Phi^{-1}(x) + \Phi^{-1}(y))$</td>
</tr>
<tr>
<td></td>
<td>with Φ the c.d.f. of standard normal distribution</td>
</tr>
</tbody>
</table>
4.3 Sklar’s theorem

Sklar’s theorem: for a random vector \((X_1, X_2, \ldots, X_n)\) there exist copulas \(C_{ij}\) s.t.

\[
F_{X_i, X_j}(x, y) = C_{ij}(F_{X_i}(x), F_{X_j}(y))
\]
4.3 Sklar’s theorem

Sklar’s theorem: for a random vector \((X_1, X_2, \ldots, X_n)\) there exist copulas \(C_{ij}\) s.t.

\[
F_{X_i,X_j}(x, y) = C_{ij}(F_{X_i}(x), F_{X_j}(y))
\]

Captures dependence structure irrespective of the marginals
4.3 Sklar’s theorem

Sklar’s theorem: for a random vector \((X_1, X_2, \ldots, X_n)\) there exist copulas \(C_{ij}\) s.t.

\[
F_{X_i, X_j}(x, y) = C_{ij}(F_{X_i}(x), F_{X_j}(y))
\]

Captures dependence structure irrespective of the marginals

Probabilistic interpretation:

\(T_M\)	co-monotonicity
\(T_P\)	independence
\(T_L\)	counter-monotonicity
4.3 Example

\[Q^P(X, Y) = \frac{7}{16} \]
\[Q^M(X, Y) = \frac{3}{8} \]
\[Q^L(X, Y) = \frac{1}{2} \]
The compatibility problem:

- not all combinations of copulas are possible
- all $C_{ij} = C$ is possible for $C \in \{T_M, T_P\}$
- $C_{12} = C_{13} = C_{23} = T_L$ is impossible
4.4 Dependence and the compatibility problem

The compatibility problem:

- not all combinations of copulas are possible
- all \(C_{ij} = C \) is possible for \(C \in \{ T_M, T_P \} \)
- \(C_{12} = C_{13} = C_{23} = T_L \) is impossible

Artificial coupling:

- winning probabilities require only bivariate coupling
- copula = comparison strategy
- does not (necessarily) reflect the real dependence
4.4 Coupling by the same copula: cycle-transitivity

Stable commutative copula:

\[x + y - C(x, y) = 1 - C(1 - x, 1 - y) \]
4.4 Coupling by the same copula: cycle-transitivity

- **Stable commutative copula:**
 \[x + y - C(x, y) = 1 - C(1 - x, 1 - y) \]

- **Theorem:** for a stable commutative copula \(C \), the reciprocal relation \(Q^C \) is cycle-transitive w.r.t.
 \[U^C(\alpha, \beta, \gamma) = \gamma + C(\beta, 1 - \gamma) \]
4.4 Coupling by a Frank copula

Frank t-norms/copulas are stable commutative copulas:

\[U^s(\alpha, \beta, \gamma) = \beta + \gamma - T^F_{1/s}(\beta, \gamma) \]

<table>
<thead>
<tr>
<th>copula</th>
<th>upper bound f.</th>
<th>equivalent</th>
<th>known as</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_M)</td>
<td>(\min(\beta + \gamma, 1))</td>
<td>1</td>
<td>(T_L)-transitivity</td>
</tr>
<tr>
<td>(T_P)</td>
<td>(\beta + \gamma - \beta \gamma)</td>
<td>(\gamma)</td>
<td>dice-transitivity</td>
</tr>
<tr>
<td>(T_L)</td>
<td>(\max(\beta, \gamma))</td>
<td></td>
<td>partial ST</td>
</tr>
</tbody>
</table>
5.1 Stochastic dominance

Purpose of stochastic dominance:

- to define a (partial) order relation on a set of real-valued random variables (RV)
- endowed with the semantics of a weak preference relation:

 RV taking higher values are preferred
5.1 Stochastic dominance

Purpose of stochastic dominance:

- to define a (partial) order relation on a set of real-valued random variables (RV)
- endowed with the semantics of a weak preference relation:

 RV taking higher values are preferred

General principle:

- pairwise comparison of RV
- pointwise comparison of performance functions
- constructed from the distribution function
5.1 Comparison functions

- The cumulative distribution function (CDF) F_X:
 \[F_X(x) = \text{Prob}\{X \leq x\} \]

- The area below the CDF F_X:
 \[G_X(x) = \int_{-\infty}^{x} F_X(t) \, dt \]
5.1 1st and 2nd degree stochastic dominance (SD)

Weak dominance relation:

| $X \succeq_{FSD} Y$ | $\overset{\text{def}}{\iff} | F_X \leq F_Y |
|----------------------|--------------------------------|
| $\iff | E[u(X)] \geq E[u(Y)] |
| for any non-decreasing function u |

| $X \succeq_{SSD} Y$ | $\overset{\text{def}}{\iff} | G_X \leq G_Y |
|----------------------|--------------------------------|
| $\iff | E[u(X)] \geq E[u(Y)] |
| for any non-decreasing concave function u |
5.1 1st and 2nd degree stochastic dominance (SD)

Weak dominance relation:

<table>
<thead>
<tr>
<th>$X \succeq_{\text{FSD}} Y$</th>
<th>\iff</th>
<th>$F_X \leq F_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\iff $E[u(X)] \geq E[u(Y)]$</td>
<td>\iff</td>
<td>$E[u(X)] \geq E[u(Y)]$</td>
</tr>
<tr>
<td>for any non-decreasing function u</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X \succeq_{\text{SSD}} Y$</th>
<th>\iff</th>
<th>$G_X \leq G_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\iff $E[u(X)] \geq E[u(Y)]$</td>
<td></td>
<td>\iff for any non-decreasing concave function u</td>
</tr>
</tbody>
</table>

Strict dominance relation:

$X \succ Y \iff X \succeq Y$ and $Y \not\succeq X$
5.1 Graphical illustration of FSD
5.2 Application areas

- Decision making under uncertainty

- Risk averse preference models in economics and finance:
 - e.g. in portfolio optimisation

- Social statistics:
 - e.g. in the comparison of welfare and poverty indicators

- Machine learning and multi-criteria decision making:
 - e.g. in ranking (= ordered sorting) algorithms
5.3 Discussion

SD induces a **crisp partial order relation** on a set of RV:

- **crisp**: no tolerance for small deviations, **no grading**
- **partial**: usually **sparse** graphs
5.3 Discussion

SD induces a **crisp partial order relation** on a set of RV:

- crisp: **no tolerance** for small deviations, **no grading**
- partial: usually **sparse** graphs

SD is theoretically attractive, but **computationally difficult**
5.3 Discussion

SD induces a **crisp partial order relation** on a set of RV:
- **crisp**: no tolerance for small deviations, no grading
- **partial**: usually **sparse** graphs

SD is theoretically attractive, but **computationally difficult**

SD uses **marginal distributions** only:
- does not take into account **dependence** between RV
5.3 Discussion

- SD induces a **crisp partial order relation** on a set of RV:
 - crisp: **no tolerance** for small deviations, **no grading**
 - partial: usually **sparse** graphs

- SD is theoretically attractive, but **computationally difficult**

- SD uses **marginal distributions** only:
 - does not take into account **dependence** between RV

- SSD accumulates area from $-\infty$ onwards
 - introduces an **absolute reference point**
5.3 Main objective: graded variants of SD

Pairwise construction of a transitive $[0, 1]$-valued relation on a set of RV which:

- avoids the pointwise comparison of performance functions
- allows to incorporate dependence between the RV
- avoids specific reference points
- allows to induce a strict order relation on the set of RV
5.3 Main objective: graded variants of SD

- Pairwise construction of a transitive \([0, 1]\)-valued relation on a set of RV which:
 - avoids the pointwise comparison of performance functions
 - allows to incorporate dependence between the RV
 - avoids specific reference points
 - allows to induce a strict order relation on the set of RV

- Choose a stable commutative copula \(C \) as comparison strategy and compute:

\[
Q^C(X, Y) = \text{Prob}\{X > Y\} + \frac{1}{2} \text{Prob}\{X = Y\}
\]
5.3 Main objective: graded variants of SD

- Pairwise construction of a transitive \([0, 1]-valued\) relation on a set of RV which:
 - avoids the pointwise comparison of performance functions
 - allows to incorporate dependence between the RV
 - avoids specific reference points
 - allows to induce a strict order relation on the set of RV

- Choose a stable commutative copula \(C\) as comparison strategy and compute:

\[
Q^C(X, Y) = \text{Prob}\{X > Y\} + \frac{1}{2} \text{Prob}\{X = Y\}
\]

- The reciprocal relation \(Q^C\) is cycle-transitive w.r.t.

\[
U^C(\alpha, \beta, \gamma) = \gamma + C(\beta, 1 - \gamma)
\]
5.4 Example: co-monotone comparison

The case T_M: continuous RV

$$Q^M(X, Y) = \int_{x:F_X(x)<F_Y(x)} f_X(x) \, dx + \frac{1}{2} \int_{x:F_X(x)=F_Y(x)} f_X(x) \, dx$$

$Q^M(X, Y) = 1$ iff $F_X < F_Y$ where $f_X \neq 0$: more restrictive than \succ_FSD
5.4 Graphical illustration

\[Q^M(X, Y) = t_1 + t_3 + \frac{1}{2} t_2 \]
6.1 Statistical preference and stochastic dominance

Statistical preference: \(X \succsim Y \) if \(Q^P(X, Y) \geq 1/2 \)
6.1 Statistical preference and stochastic dominance

- **Statistical preference:** $X \succeq Y$ if $Q^p(X, Y) \geq 1/2$

- **Theorem:** FSD implies statistical preference
6.1 Statistical preference and stochastic dominance

- **Statistical preference**: \(X \succeq Y \) if \(Q^P(X, Y) \geq 1/2 \)

- **Theorem**: FSD implies statistical preference
6.2 Exploiting cycle-transitivity: T_P

- The relation \succ^3_P

The relation $X \succ^3_P Y \iff Q^P(X, Y) > \frac{\sqrt{5} - 1}{2}$

is an asymmetric relation without cycles of length 3

- The golden section

The golden section $\frac{\sqrt{5} - 1}{2} : \frac{22}{36} < \frac{\sqrt{5} - 1}{2} < \frac{23}{36}$

B. De Baets
6.2 Exploiting cycle-transitivity: T_P

The relation $>^k_P$

$$X >^k_P Y \iff Q^P(X, Y) > 1 - \frac{1}{4 \cos^2\left(\frac{\pi}{(k + 2)}\right)}$$

is an asymmetric relation without cycles of length k.
The relation \succ^k_P:

$$X \succ^k_P Y \iff Q^P(X, Y) > 1 - \frac{1}{4 \cos^2(\pi/(k + 2))}$$

is an asymmetric relation without cycles of length k.

The relation \succ^∞_P:

$$X \succ^\infty_P Y \iff Q^P(X, Y) \geq \frac{3}{4}$$

is an asymmetric acyclic relation.
6.2 Exploiting cycle-transitivity: T_P

- The relation \succ^k_P
 \[X \succ^k_P Y \iff Q^P(X, Y) > 1 - \frac{1}{4 \cos^2\left(\frac{\pi}{k + 2}\right)} \]

 is an asymmetric relation without cycles of length k

- The relation \succ^∞_P
 \[X \succ^\infty_P Y \iff Q^P(X, Y) \geq \frac{3}{4} \]

 is an asymmetric acyclic relation

- The transitive closure \succ_P of \succ^∞_P is a strict order relation
The relation $\overset{k}{\succ}_M$ is an asymmetric relation without cycles of length k.

\[
X \overset{k}{\succ}_M Y \iff Q^M(X, Y) > \frac{k - 1}{k}
\]
6.2 Exploiting cycle-transitivity: T_M and T_L

The relation \succ^k_M

\[X \succ^k_M Y \iff Q^M(X, Y) > \frac{k - 1}{k} \]

is an asymmetric relation without cycles of length k.

The relation \succ_M

\[X \succ_M Y \iff Q^M(X, Y) = 1 \]

is a strict order relation.
6.2 Exploiting cycle-transitivity: T_M and T_L

- The relation \succ^k_M

\[X \succ^k_M Y \iff Q^M(X, Y) > \frac{k - 1}{k} \]

is an asymmetric relation **without cycles of length** k

- The relation \succ_M

\[X \succ_M Y \iff Q^M(X, Y) = 1 \]

is a **strict order relation**

- The relation \succ_L

\[X \succ_L Y \iff Q^L(X, Y) > \frac{1}{2} \]

is a **strict order relation**
Cutting levels:

<table>
<thead>
<tr>
<th>copula</th>
<th>s</th>
<th>level α_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_M</td>
<td>0</td>
<td>$= 1$</td>
</tr>
<tr>
<td>T_P</td>
<td>1</td>
<td>$\geq 3/4$</td>
</tr>
<tr>
<td>T_L</td>
<td>∞</td>
<td>$> 1/2$</td>
</tr>
</tbody>
</table>
6.3 The Frank copula family

Cutting levels:

<table>
<thead>
<tr>
<th>copula</th>
<th>s</th>
<th>level α_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_M</td>
<td>0</td>
<td>$= 1$</td>
</tr>
<tr>
<td>T_P</td>
<td>1</td>
<td>$\geq 3/4$</td>
</tr>
<tr>
<td>T_L</td>
<td>∞</td>
<td>$> 1/2$</td>
</tr>
</tbody>
</table>

The Frank copula family:

$$\alpha_s = 1 - \log_s \left(\frac{1 + \sqrt{s}}{2} \right)$$

with

$$\alpha_s + \alpha_{1/s} = 3/2$$
6.3 The Frank copula family

Cutting levels:

<table>
<thead>
<tr>
<th>copula</th>
<th>level</th>
<th>(\alpha_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_M)</td>
<td>0</td>
<td>= 1</td>
</tr>
<tr>
<td>(T_P)</td>
<td>1</td>
<td>(\geq \frac{3}{4})</td>
</tr>
<tr>
<td>(T_L)</td>
<td>(\infty)</td>
<td>(> \frac{1}{2})</td>
</tr>
</tbody>
</table>

The Frank copula family:

\[
\alpha_s = 1 - \log_s \left(\frac{1 + \sqrt{s}}{2} \right)
\]

with

\[
\alpha_s + \alpha_{1/s} = \frac{3}{2}
\]

None of the strict order relations \(>_s \) generalizes strict FSD
6.3 A picture says more than . . .
Reciprocal relation: \[Q^M(X, Y) = \frac{1}{n} \sum_{k=1}^{n} \delta^M_k \]

with

\[\delta^M_k = \begin{cases}
1 & \text{, if } x(k) > y(k) \\
1/2 & \text{, if } x(k) = y(k) \\
0 & \text{, if } x(k) < y(k)
\end{cases} \]
6.4 Co-monotone comparison revisited

Reciprocal relation:

\[Q^M(X, Y) = \frac{1}{n} \sum_{k=1}^{n} \delta_k^M \]

with

\[\delta_k^M = \begin{cases}
1 & \text{, if } x(k) > y(k) \\
1/2 & \text{, if } x(k) = y(k) \\
0 & \text{, if } x(k) < y(k)
\end{cases} \]

Parametrized version: \(p \in \mathbb{R}^+ \)

\[Q^M_p(X, Y) = \frac{\sum_{k=1}^{n} (x(k) - y(k))^p}{\sum_{k=1}^{n} |x(k) - y(k)|^p} \]
Limit case: $Q_0^M = Q^M$
6.4 Co-monotone comparison revisited

Limit case: $Q_0^M = Q^M$

The case of continuous RV and $p = 1$:

$$Q_1^M(X, Y) = \frac{\int (F_Y(x) - F_X(x))_+ \, dx}{\int |F_Y(x) - F_X(x)| \, dx}$$
6.4 Co-monotone comparison revisited

- Limit case: $Q_0^M = Q^M$

- The case of continuous RV and $p = 1$:

 $Q_1^M(X, Y) = \frac{\int (F_Y(x) - F_X(x))_+ \, dx}{\int |F_Y(x) - F_X(x)| \, dx}$

- $Q_1^M(X, Y) = 1$ iff $X \succ_{\text{FSD}} Y$
6.4 Graphical illustration

![Graphical illustration](image-url)
6.4 Transitivity

- **Theorem**: the probabilistic relation Q_1^M is moderately stochastic transitive

- The strict order relation at $1/2$:

\[Q_1^M(X, Y) > \frac{1}{2} \iff E[X] > E[Y] \]

- Any weak ($> 1/2$) or strict ($\geq 1/2$) cutting level α yields a strict order relation:

 - with increasing α the graph become more and more sparse (Hasse tree)
7. Conclusion

- **Cycle-transitivity** = general framework for studying the transitivity of reciprocal relations

- **Unorthodox evaluation**: triangles are visited in a cyclic manner, while ordering the weights encountered, and imposing an upper bound on ‘sum minus 1’

- Allows the description of the transitivity of winning probabilities among (artificially coupled) random variables

- Starting point for the development of alternative notions of stochastic dominance
7. Conclusion

Question 1:
Does there exist a general framework for studying transitivity?
7. Conclusion

Question 1:
Does there exist a general framework for studying transitivity?

Answer: YES
7. Conclusion

Question 1:
Does there exist a general framework for studying transitivity?
Answer: YES

Question 2:
Are cycles really incompatible with any notion of transitivity?
7. Conclusion

Question 1:
Does there exist a general framework for studying transitivity?
Answer: YES

Question 2:
Are cycles really incompatible with any notion of transitivity?
Answer: NO
7. Conclusion

Question 1:
Does there exist a general framework for studying transitivity?

Answer: YES

Question 2:
Are cycles really incompatible with any notion of transitivity?

Answer: NO

Question 3:
Can cycles be resolved?
7. Conclusion

Question 1:
Does there exist a general framework for studying transitivity?

Answer: YES

Question 2:
Are cycles really incompatible with any notion of transitivity?

Answer: NO

Question 3:
Can cycles be resolved?

Answer: YES
Thank you for your attention!

{Bernard.DeBaets,Hans.DeMeyer}@UGent.be